Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.
نویسندگان
چکیده
Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.
منابع مشابه
Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54
Rad54 plays key roles in homologous recombination (HR) and double-strand break (DSB) repair in yeast, along with Rad51, Rad52, Rad55 and Rad57. Rad54 belongs to the Swi2/Snf2 family of DNA-stimulated ATPases. Rad51 nucleoprotein filaments catalyze DNA strand exchange and Rad54 augments this activity of Rad51. Mutations in the Rad54 ATPase domain (ATPase(-)) impair Rad54 function in vitro, sensi...
متن کاملEfficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae.
DNA double-strand break (DSB) repair in yeast is effected primarily by gene conversion. Conversion can conceivably result from gap repair or from mismatch repair of heteroduplex DNA (hDNA) in recombination intermediates. Mismatch repair is normally very efficient, but unrepaired mismatches segregate in the next cell division, producing sectored colonies. Conversion of small heterologies (single...
متن کاملThe homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.
In recombinational DNA double-strand break repair a homologous template for gene conversion may be located at several different genomic positions: on the homologous chromosome in diploid organisms, on the sister chromatid after DNA replication, or at an ectopic position. The use of the homologous chromosome in mitotic gene conversion is thought to be limited in the yeast Saccharomyces cerevisia...
متن کاملThe Role of Exo1p Exonuclease in DNA End Resection to Generate Gene Conversion Tracts in Saccharomyces cerevisiae
The yeast Exo1p nuclease functions in multiple cellular roles: resection of DNA ends generated during recombination, telomere stability, DNA mismatch repair, and expansion of gaps formed during the repair of UV-induced DNA damage. In this study, we performed high-resolution mapping of spontaneous and UV-induced recombination events between homologs in exo1 strains, comparing the results with sp...
متن کاملHighly Specific Contractions of a Single CAG/CTG Trinucleotide Repeat by TALEN in Yeast
Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 153 2 شماره
صفحات -
تاریخ انتشار 1999